Gliederung der Vorlesung

From Alda
Revision as of 00:57, 27 May 2012 by Buettner.niels (talk | contribs) (Erster Ansatz)
Jump to navigationJump to search

Einführung (17.4.2012)

  • Definition von Algorithmen und Datenstrukturen, Geschichte
  • Fundamentale Algorithmen: create, assign, copy, swap, compare etc.
  • Fundamentale Datenstrukturen: Zahlen, Container, Handles
  • Python-Grundlagen

Container

(19.4.2012)

  • Anforderungen von Algorithmen an Container
  • Einteilung der Container
  • Grundlegende Container: Array, verkettete Liste, Stack und Queue
  • Sequenzen und Intervalle (Ranges)

Sortieren

  1. Artikel (24. und 26.4.2012)
    • Spezifikation des Sortierproblems
    • Selection Sort und Insertion Sort
    • Merge Sort
    • Quick Sort und seine Varianten
    • Vergleich der Anzahl der benötigten Schritte
    • Laufzeitmessung in Python

Korrektheit

  1. Artikel (3. und 8.5.2012)
    • Definition von Korrektheit, Algorithmen-Spezifikation
    • Korrektheitsbeweise versus Testen
    • Vor- und Nachbedingungen, Invarianten, Programming by contract
    • Testen, Execution paths, Unit Tests in Python
    • Ausnahmen (exceptions) und Ausnahmebehandlung in Python

Effizienz

  1. Artikel (10. und 15.5.2012)
    • Laufzeit und Optimierung: Innere Schleife, Caches, locality of reference
    • Laufzeit versus Komplexität
    • Landausymbole (O-Notation, <math>\Omega</math>-Notation, <math>\Theta</math>-Notation), Komplexitätsklassen
    • Bester, schlechtester, durchschnittlicher Fall
    • Amortisierte Komplexität

Suchen (22. und 24.5.2012)

    • Lineare Suche
    • Binäre Suche in sortierten Arrays, Medianproblem
    • Suchbäume, balancierte Bäume
    • selbst-balancierende Bäume, Rotationen
    • Komplexität der Suche
  1. Prioritätswarteschlangen (29.5.2012)
    • Heap-Datenstruktur
    • Einfüge- und Löschoperationen
    • Heapsort
    • Komplexität des Heaps
  2. Hashing und assoziative Arrays (31.5.und 5.6.2012)
    • Implementation assoziativer Arrays mit Bäumen
    • Hashing und Hashfunktionen
    • Implementation assoziativer Arrays als Hashtabelle mit linearer Verkettung bzw. mit offener Adressierung
    • Anwendung des Hashing zur String-Suche: Rabin-Karp-Algorithmus
  3. Iteration versus Rekursion (12.6.2012)
    • Typen der Rekursion und ihre Umwandlung in Iteration
    • Auflösung rekursiver Formeln mittels Master-Methode und Substitutionsmethode
  4. Generizität (14.6.2012)
    • Abstrakte Datentypen, Typspezifikation
    • Required Interface versus Offered Interface
    • Adapter und Typattribute, Funktoren
    • Beispiel: Algebraische Konzepte und Zahlendatentypen
    • Operator overloading in Python
  5. Graphen und Graphenalgorithmen (19. bis 28.6.2012)
    • Einführung
    • Graphendatenstrukturen, Adjazenzlisten und Adjazenzmatrizen
    • Gerichtete und ungerichtete Graphen
    • Vollständige Graphen
    • Planare Graphen, duale Graphen
    • Pfade, Zyklen
    • Tiefensuche und Breitensuche
    • Zusammenhang, Komponenten
    • Gewichtete Graphen
    • Minimaler Spannbaum
    • Kürzeste Wege, Best-first search (Dijkstra)
    • Most-Promising-first search (A*)
    • Problem des Handlungsreisenden, exakte Algorithmen (erschöpfende Suche, Branch-and-Bound-Methode) und Approximationen
    • Erfüllbarkeitsproblem, Darstellung des 2-SAT-Problems durch gerichtete Graphen, stark zusammenhängende Komponenten
  6. Randomisierte Algorithmen (3. und 5.7.2012)
    • Zufallszahlen, Zyklenlänge, Pitfalls
    • Zufallszahlengeneratoren: linear congruential generator, Mersenne Twister
    • Randomisierte vs. deterministische Algorithmen
    • Las Vegas vs. Monte Carlo Algorithmen
    • Beispiel für Las Vegas: Randomisiertes Quicksort
    • Beispiele für Monte Carlo: Randomisierte Lösung des k-SAT Problems
    • RANSAC-Algorithmus, Erfolgswahrscheinlichkeit, Vergleich mit analytischer Optimierung (Methode der kleinsten Quadrate)
  7. Greedy-Algorithmen und Dynamische Programmierung (10. und 12.7.2012)
    • Prinzipien, Aufwandsreduktion in Entscheidungsbäumen
    • bereits bekannte Algorithmen: minimale Spannbäume nach Kruskal, kürzeste Wege nach Dijkstra
    • Beispiel: Interval Scheduling Problem und Weighted Interval Scheduling Problem
    • Beweis der Optimalität beim Scheduling Problem: "greedy stays ahead"-Prinzip, Directed Acyclic Graph bei dynamischer Programmierung
  8. NP-Vollständigkeit (17. und 19.7.2012)
    • die Klassen P und NP
    • NP-Vollständigkeit und Problemreduktion
  9. Reserve und/oder Wiederholung (24. und 26.7.2012)