Randomisierte Algorithmen

From Alda
Jump to navigationJump to search

Randomisierte Algorithmen

Def.: Algorithmen, die bei Entscheidung oder bei der Wahl der Parameter Zufallszahlen benutzen

Bsp.: Lösen des K-SAT-Problems durch RA

   geg.: logischer Ausdruck in K-CNF (n Variablen, m Klauseln, k Variablen pro Klausel)
   <math>\underbrace {\underbrace {\left(x_1 \vee x_3 \vee...\right)}_{k\; Variablen} \wedge \left( x_2 \vee x_4 \vee...\right)}_{m\;Klauseln}</math>
   for i in range (trials):    #Anzahl der Versuche
        #Bestimme eine Zufallsbelegung des <math>\{ x_i \}</math>:
        for j in range (steps):
              if <math>\{ x_i \}</math> erfüllt alle Klauseln: return <math>\{ x_i \}</math>
              #wähle zufällig eine Klausel, die nicht erfüllt ist und negiere zufällig eine der Variablen in dieser Klausel 
              (die Klausel ist jetzt erfüllt)
   return None


Eigenschaft: falls <math>k>2</math> : steps *trials <math>\in O\left(\Alpha^n \right) \Alpha >1</math>

z.B. <math>k=3</math> steps=3*n, trials=<math>\left(\frac{4}3\right)^n</math>

aber: bei <math>k=2</math> sind im Mittel nur steps=<math>O\left(n^2\right)</math> nötig, trials=<math>O\left(1\right)</math>



-Zufallsbelegung hat <math>t\leq n</math> richtige Variablen (im Mittel <math>t\approx \frac {n} 2</math>)