Prioritätswarteschlangen
Prioritätswarteschlangen
* Max Priority Quene : insert(x) x = largest() removeLargest()
* Min Priority Quene: smallest() removeSmallets()
Prioritätswarteschlange als Suchproblem
- Sequentielle Suche - Array mit Prioritäten : insert(x)<=> a.append(x) ( <math>\mathcal{O}(1)</math>(amortisierte Komplexität))
def largest(a):
if len (a) == 0:
raise RuntimeError("...")
max = a[0]
k = 0
for n in range(1, len(a): (innere Schleife von SelectionSort)
if a[n] > max (Das ganze hat die Komplexität: N = len(a) => <math>\mathcal{O}(N)</math>
max = a[n]
k = n
return k
Bei kleine Array ist dies die schnellste Methode
Binärer (balancierter)Suchbaum
insert => z.B. wie beim Anderson Baum [1] <math>\mathcal{O}(logN)</math>
def largest(node): # Wurzel
if node.right is not None: #rechts stehen immer die großen
return largest(node.right)
return node #wenn es nicht mehr nach rechts geht, dann haben wir den größten Knoten gefunden
Das ganze hat <math>\mathcal{O}(logN)</math> Komplexität
Ergebnis: gute Komplexität aber komplizierte Datenstruktur
Heap
- Datenstruktur optimiert für Prioritätssuche - man sucht nicht effizient alle Knoten, sondern nur einen bestimmten z.B. Heap max
- Definition: ein linkslastiger Binärbaum ist ein Baum mit <math>d(node.left) \geq d(node.right)</math>
Ein Heap ist ein linkslastiger, perfekt balancierter Baum. (lässt sich max. um 1 unterscheiden)
Man kann einen Heap leicht als Array implementieren, wie folgende Grafik veranschaulicht:
index[parent] = [(indexChild - 1)/2] #[] heißt abgerundet
index[left] = index[parent]2 + 1
index[right] = index[parent]2 + 2
=> linkslastiger perfect balancierter Binärbaum kann effizient als Array abgespeichert werden
=>verwende Indizes wie oben
Heap - Bedingung
- die Wurzel hat höhere Prioriät als die Kinder(gilt für jeden Teilbaum)
=>Wurzel = array[0] hat die größte Priorität
def largest(h):
return h[0] <math>\mathcal{O}(N)</math>
Einfügen in einem Heap
h - Array #speichrt Haep
def insert(h,x):
h.append(x) # wir speichern den Wurzel am Ende, so wird glecih zu einem linkslastigen perfect balancierten Baum (die Haep - Bedingung ist erfüllt)
upheap(h, len(h) - 1):
def upheap(h, k):
"""k-tes Element evtl. an der falsche Stelle
"""
v = h[k]
while True #endlose Schleife
if k == 0:
break
parent = (k - 1)/2
if h[parent]>v:
break
h[k] = h.parent
k = parent
h[k] = v
def removeLargest(h): h[0] = h[len(h) - 1]
del h[len(n) - 1] <math>\mathcal{O}(1)</math>
downHeap(h, 0) <math>\mathcal{O}(logN)</math>
def downHeap(h, k):
v = h[k]
while True
child = 2k + 1 #linke Kind
if child <math>\ge</math>len(h):
break
if child < h[child] < h[child + 1] #rechtes Kind
child = child + 1 if v <math>\ge</math> h[child]:
break
h[k] = h[child]
k = child
h[k] = v
Beispiel am Wort "SORTING"
(Grafiken folgen)
weitere Heapvarianten
- Min-Max-Priority Queue ("Deap", Double Ended Heap)
- Binomialer Heap, effiziente Operation "merege Heap" <math>\mathcal{O}(n * log N (i*N_1 + N_2)</math>
(Beweis durch binomiale Koeffizienten, Zusammenführen zweier Prioritätslisten)
- Fibonacci-Heap, einfügen in amortisierter Zeit <math>\mathcal{O}(1)</math>
(Beweis durch Fibonacci Zahlen)