Container

From Alda
Jump to navigationJump to search

Abstrakte Datentypen

Bei einem abstrakten Datentyp wird die Datenstruktur definiert, indem man die Menge der erlaubten Operationen und deren Bedeutung abstrakt (d.h. unabhängig von einer bestimmten Implementation) spezifiziert. Dazu verwendet man im Allgemeinen die algebraische Spezifikation, die zunächst die Operationen auflistet und danach deren Eigenchaften in Form von Axiomen beschreibt, die nach deren Ausführung jeweils gelten müssen.

Wir unterscheiden folgende Arten von Operationen:

  1. Observer: geben Informationen über den Zustand eines Objekts
  2. Modifier:
    beim funktionalen Programmierstil: erzeugen ein neues, verändertes Objekt
    beim prozeduralen und objekt-orientierten Programmierstil: verändern ein vorhandenes Objekt
  3. Konstruktoren: erzeugen ein neues Objekt (bei funktionaler Programmierung sind Konstruktoren nur ein Spezialfall der Modifier).

Wird ein Objekt a modifiziert, ist sein alter Wert in der Spezifikation unter dem formalen Namen aold zugreifbar. Dies ermöglicht es, in den Axiomen den alten mit dem neuen Zustand zu vergleichen.

Im folgenden beschreiben wir die algebraische Spezifikation am Beispiel der Container-Datenstrukturen. Container dienen, wie in der Schifffahrt, zum Aufbewahren anderer Datenobjekte und sind damit grundlegend für die Programmierung.

Array

Seien a ∈ Array, i ∈ <math>\mathbb{N}_0</math> (ein nicht-negativer Index), v ∈ Object (ein beliebiges Objekt)

Operationen:

erzeuge ein neues Array: new_array(size ∈ <math>\mathbb{N}_0</math>, initial ∈ Object) → Array
erfrage die Anzahl der Arrayelemente: len(a) → <math>\mathbb{N}_0</math>
erfrage das Element beim Index i: get(a,i) → Object
setze das Objekt beim Index i: set(a,i,v) → Array

Axiome:

Ein neues Array enthält so viele Elemente, wie im Konstruktor angegeben waren.
Alle Elemente haben den gegebenen Initialwert.
a = new_array(size, initial)
assert(len(a) == size)

für alle i ∈ 0, ..., size-1 gilt:
  assert(get(a, i) == initial)
Nach der Zuweisung von v beim Index i gilt:
(i) die Größe bleibt unverändert,
(ii) Index i enthält das Element v,
(iii) die übrigen Elemente haben sich nicht verändert.
a = set(a, i, v)
assert(len(a) == len(aold))
assert(get(a, i) == v)

für alle k ≠ i gilt:
  assert(get(a, k) == get(aold, k))

in Python:

  • der Array-Typ heißt list (aus historischen Gründen, das hat nichts mit verketteten Listen zu tun)
  • get und set heißen __getitem__ bzw. __setitem__
  • rufe Funktionen mit Punktsyntax auf: statt get(a,i) schreibe a.__getitem__(i)
  • Indexschreibweise:
    v = a[i] ist äquivalent zu v = a.__getitem__(i)
    a[i] = v ist äquivalent zu a.__setitem__(i, v)
  • Konstruktoren:
    a = list() ist äquivalent zu a = [] und entspricht a = new_array(0, 0) (erzeugt ein leeres Array)
    a = [initial]*size entspricht a = new_array(size, initial) (erzeugt ein Array der gewünschten Größe mit Initialwert)

Stack

under construction

Alter Inhalt der Seite

der Begriff Container stammt ursprünglich aus der Schiffahrt, Container kann mehrere Bedeutungen annehmen.

in der Schifffahrt:
Behälter, der Güter lagern und transportieren kann.

in der Datenverarbeitung:
- Computertechnik: ein Dateiformat, das verschiedenartige Datenformate enthalten kann. (siehe Containerformat)
- Server: Teil einer Server-Software und Enterprise Java Beans (EJB) verwaltet. Der Container speichert die Daten und prüft die Verfügbarkeit für jeden autorisierten Client. (siehe EJB-Container)
- in Programmiersprachen: Einige Programmiersprachen wie Java oder C++ verfügen über Containerklassen. In C++ sind sie in der Stardbibliothek C++Standardbibliothek
- in der Informatik (und bei uns in der Vorlesung): ein abstraktes Objekt, das Elemente des gleichen Typs speichert (Array, Liste, Dictionary,...) siehe auch Datenstrukturen

Mögliche Operationen

Welche Operationen hätte man denn gerne bei einer solchen Container-Datenstruktur? Was benötigen Algorithmen häufig? Wie sollten die Daten organisiert sein, damit Algorithmen effizient damit arbeiten können?
Eine solche Anforderungsanalyse ist sehr aufwendig und kann sich über Jahre erstrecken, weil Erfahrungen gesammelt werden müssen, welche Anforderungen an Datenstrukturen in vielen Algorithmen immer wieder auftreten.
Wir listen im folgenden nur das Resultat, also die wichtigsten Operationen von Container-Datenstrukturen auf.

Sei c eine Container-Datenstruktur und v ein darin gespeicherter Wert:


Lesender Zugriff

0. c.size() gibt die Anzahl der Elemente im Container an
1a. v = c.get(i) das i-te Element im Container lesen
1b. v = c.get(pos) das Element an Position pos lesen (pos ist ein geeignetes Hilfsobjekt, das in Abhängigkeit von der Art der Datenstruktur eine Position im Container referenziert. Im Falle 1a. v = c.get(i) ist pos eine natürliche Zahl, aber es gibt auch andere Möglichkeiten, die Position zu kodieren.)
1c. v = c.get(key) das Element mit dem Schlüssel key lesen (Beachte den Unterschied zu 1b: In 1b markiert pos eine Position im Container, hier in 1c bezieht sich key auf eine Eigenschaft der Datenelemente, die von der Position im Container unabhängig ist.)
2a. v = c.first() erstes Element lesen (äquivalent zu v = c.get(0))
2b. v = c.last() letztes Element lesen (äquivalent zu v = c.get(c.size()-1))
3a. v = c.smallest() das kleinste Element lesen (dies bezieht sich auf eine Eigenschaft der Datenelemente bzw. Schlüssel, im Unterschied zu 2a, wo es um die Position im Container geht.)
3b. v = c.largest() das größte Element lesen (dies bezieht sich auf eine Eigenschaft der Datenelemente bzw. Schlüssel, im Unterschied zu 2b, wo es um die Position im Container geht.)



Schreibender Zugriff

4a. v.set(i, v) i-tes Element überschreiben (c.size() bleibt unverändert)
4b. v.set(pos, v) Element an der Stelle pos überschreiben (c.size() bleibt unverändert. Zur Bedeutung von pos siehe 1b.)
4c. v.set(key, v) Element mit dem Schlüssel key überschreiben (c.size() bleibt unverändert)
5a. c.insert(i, v) Objekt als i-tes in den Container einfügen (Werte ab i werden eine Position nach hinten verschoben, c.size() erhöht sich um 1)
5b. c.insert(pos, v) Objekt an Position pos in den Container einfügen (Werte ab pos werden eine Position nach hinten verschoben, c.size() erhöht sich um 1)
5c. c.insert(key, v) Objekt unter dem Schlüssel key in den Container einfügen (Wenn der Schlüssel schon vergeben war, wird ein Fehler signalisiert. c.size() erhöht sich um 1).
5d. c.insert(v) Objekt an beliebiger Stelle in den Container einfügen (Der Container bestimmt die optimale Position selbst. c.size() erhöht sich um 1).
6a. c.prepend(v) Objekt am Anfang einfügen (äquivalent zu c.insert(0, v), c.size() erhöht sich um 1)
6b. c.append(v) Objekt am Ende anhängen (äquivalent zu c.insert(c.size(), v), c.size() erhöht sich um 1)
7a. c.remove(i) i-tes Element aus dem Container löschen (Werte ab i werden eine Position nach vorn verschoben, c.size() verringert sich um 1)
7b. c.remove(pos) Objekt an Position pos aus dem Container löschen (Werte ab pos werden eine Position nach vorn verschoben, c.size() verringert sich um 1)
7c. c.remove(key) Objekt unter dem Schlüssel key aus dem Container löschen (Wenn der Schlüssel nicht vergeben war, wird ein Fehler signalisiert. c.size() verringert sich um 1, wenn es kein Fehler signalisiert hat.)
8a. c.removeFirst() das erste Element aus dem Container entfernen (äquivalent zu c.remove(0), c.size() verringert sich um 1)
8b. c.removeLast() das letzte Element aus dem Container entfernen (äquivalent zu c.remove(c.size()-1), c.size() verringert sich um 1)
9a. c.removeSmallest() das kleinste Element aus dem Container entfernen (dies bezieht sich auf eine Eigenschaft der Datenelemente bzw. Schlüssel, im Unterschied zu 8a, wo es um die Position im Container geht. c.size() verringert sich um 1)
9b. c.removeLargest() das größte Element aus dem Container entfernen (dies bezieht sich auf eine Eigenschaft der Datenelemente bzw. Schlüssel, im Unterschied zu 8b, wo es um die Position im Container geht. c.size() verringert sich um 1)



Facts

  • Jede dieser Operationen kann sehr effizient implementiert werden.
  • Keine Datenstruktur ist bekannt, die alle diese Operationen effizient implementiert.

Beispiele

Je nachdem welche Operation effizient sein soll, wird eine andere Container Datenstruktur ausgewählt. Die Operation c.size() wird von allen Containern effizient unterstützt.

Arrays

(statisches) Array [1]
Das Array ist die einfachste Datenstruktur, es kann einfach als aufeinanderfolgender Bereich von Speicherzellen implementiert werden. Jede dieser Speicherzellen nimmt ein Objekt als Datenelement auf. Die Größe ist nicht veränderbar (daher der Name statisch).
Das statische Array unterstützt die Operationen
   1a.    c.get(i)
   4a.    c.set(i, value)
Dynamisches Array [2]
Die Größe ist veränderbar, aber nur durch Anfügen oder Entfernen eines Elements am Ende des Arrays. Die unterstützen Operationen sind dieselben wie die des statischen Arrays, zusätzlich unterstützt das dynamische Array die Operationen
   6b.    c.append(v)
   8b.    c.removeLast()

Wir beschreiben im Abschnitt Amortisierte Komplexität, wie man dies effizient implementieren kann. Das Anfügen neuer Elemente am Ende ist eine sehr häufige Operation, so dass das dynamische Array eine der beliebtesten Datenstrukturen ist. In Python hat das dynamische Array den Typ list, was in diesem Fall nichts mit verketten Listen zu tun hat, sondern eher auf Listen im Sinne von Tabellen hinweist (die Namenswahl ist dennoch etwas unglücklich und kann zu Verwechslungen führen).

assoziatives Array (Dictionary) [3]
Ein Dictionary verallgemeinert das dynamische Array: Während Arrays auf ihre Elemente über Indizes (= natürliche Zahlen) zugreifen, können die Schlüssel (Keys) bei einem Dictionary einen beliebigen Typ haben. Jedes Element des Dictionary besteht aus einem Schlüssel-Wert-Paar, jeder Schlüssel bekommt somit einen Wert zugewiesen.
Das Dictionary unterstützt die Operationen
   1c.    c.get(key)
   4c.    c.set(key, value)
   5c.    c.insert(key, value)
   7c.    c.remove(key)

Wenn als Schlüssel natürliche Zahlen 0, 1, ..., N gewählt werden, sind dies im wesentlichen dieselben Operationen wie beim Array. Man wird das Dictionary also vor allem dann einsetzen, wenn die Schlüssel einen anderen Typ haben, oder wenn die Zahlen nicht aus dem zusammenhängenden Intervall 0, ..., N kommen. Das Python-Dictionary hat den Typ dict. Wir behandeln diese Datenstruktur in den Kapiteln Assoziative Arrays und Hashing und Hashtabellen.

verkettete Listen

(einfach) verkettete Liste [4]
Im Gegensatz zum Array müssen die Speicherzellen nicht nacheinenander im Speicher abgelegt sein. Statt dessen enthält jedes Element der Liste ein Feld next, das auf das nächste Element der Liste verweist. Um das i-te Element zu finden, muss man die Liste von vorn nach hinten durchlaufen. Deshalb ist die Operation c.get(i) für verkettete Listen nicht effizient. Wenn man allerdings auf ein Element zugegriffen hat, kann man ein pos-Objekt (in diesem Fall eine Referenz auf das Element) speichern, so dass ein erneuter Zugriff auf das selbe Element schnell geht. Das gleiche gilt für das folgende Element, weil man nur einmal pos = pos.next aufrufen muss. Nur wenig komplizierter (und dadurch ebenfalls effizient) ist das Einfügen eines neuen Elements an der Position pos.
Die verkette Liste unterstützt somit die Operationen:
   1b.    c.get(pos)
   2a.    c.first()
   4b.    c.set(pos, value)
   5b.    c.insert(pos, value)
   6a.    c.prepend(value)
   7b.    c.remove(pos)
   8a.    c.removeFirst(pos)

Es scheint, dass die Liste eine sehr flexible Datenstruktur ist. Allerdings ist es ein gravierender Nachteil, dass pos nur auf das jeweils nächste Element weitergesetzt werden kann. Im Gegensatz dazu können Indizes in einem Array effizient auf beliebige Positionen gesetzt werden. Man bevorzugt deshalb heute dynamische Arrays.

Doppelt verkettete Liste [5]
Im Gegensatz zur einfach verketteten Liste enthält jedes Element nicht nur einen Zeiger auf das darauffolgende, sondern auch auf das vorherige Element in der Liste. Dadurch kann ein pos-Objekt auch effizient um ein Element zurückgesetzt werden: pos = pos.previous.
Die doppelt verkette Liste unterstützt deshalb die selben Operationen wie die einfach verkettete, und zusätzlich
   2b.    c.last()
   6b.    c.append(value)
   8b.    c.removeLast()

Queues

Stack (Stapelspeicher) [6]
Speichert/Stapelt die Objekte mit push in einen Speicher. Wiederrum mit pop kann das oberste (=zuletzt eingefügte) Element herausgeholt werden: LIFO (Last In First Out)
Die Python-Datenstruktur List eignet sich beispielsweise als Stack.
Operationen:
   2b.    c.last()         # auf das oberste Element zugreifen, ohne es zu entfernen
   6b.    c.append(value)  # Element auf den Stapel legen (beim Stack meist c.push(value) genannt)
   8b.    c.removeLast()   # oberstes Element entfernen (beim Stack meist c.pop() genannt)
Queue (Schlange) [7]
Eine Queue ist wie eine Warteschlange an der Kasse im Supermarkt, bedient wird derjenige der als erster an die Kasse kommt: FIFO (First In First Out)
Operationen:
   2a.    c.first()
   6b.    c.append(value)
   8a.    c.removeFirst()
Deque (Double Ended Queue) [8]
wie Stack + Queue, d.h. Objekte können am Ende eingefügt, aber sowohl vorn als auch hinten gelesen und entfernt werden.
Operationen
   2a.    c.first()
   2b.    c.last()
   6b.    c.append(value)
   8a.    c.removeFirst()
   8b.    c.removeLast()

Die Deque ist Thema in Übungsblatt 3.

Prioritätswarteschlangen

MinPriorityQueue [9]
Warteschlange, die das Element mit der kleinsten Priorität zuerst zurückgibt (z.B. an der Kasse im Supermarkt diejenige/derjenige, die/der die wenigsten Produkte kaufen möchte)
Mögliche Operationen:
   3a.    c.smallest()
   5d.    c.insert(value)
   9a.    c.removeSmallest()
MaxPriorityQueue [10]
Warteschlange, die das Element mit der größten Priorität zuerst zurückgibt
Unterstützte Operationen sind:
   3b.    c.largest()
   5d.    c.insert(value)
   9b.    c.removeLargest()
MinMaxPriorityQueue [11]
kombiniert MinPriorityQueue + MaxPriorityQueue

Die drei letzten Datenstrukturen behandeln wir im Kapitel Prioritätswarteschlangen.

Container in Python

under construction

Nächstes Thema