Main Page

From Alda
Jump to navigationJump to search

Vorlesung Algorithmen und Datenstrukturen

Dr. Ullrich Köthe, Universität Heidelberg, Sommersemester 2012

Die Vorlesung findet dienstags und donnerstags jeweils um 14:15 Uhr in INF 227 (KIP), HS 2 statt.

Klausur und Nachprüfung

Die Abschlussklausur findet voraussichtlich am Dienstag, dem 31.7.2012 von 9:30 bis 12:30 Uhr statt. Der Raum wird noch bekanntgegeben. Zur Klausur wird zugelassen, wer mindestens 50% der Übungspunkte erreicht. (Hinweis: Sie benötigen einen Lichtbildausweis, um sich bei der Klausur zu indentifizieren!)

Leistungsnachweise

Für alle Leistungsnachweise ist die erfolgreiche Teilnahme an den Übungen erforderlich. Für Leistungspunkte bzw. den Klausurschein muss außerdem die schriftliche Prüfung bestanden werden. Einzelheiten werden noch bekanntgegeben.

Übungsbetrieb

  • Termine und Räume:
  • Die Übungsgruppen werden über MÜSLI verwaltet. Dort erfolgt auch die Anmeldung.
  • Übungsaufgaben (Übungszettel mit Abgabetermin, Musterlösungen). Lösungen bitte per Email an den jeweiligen Übungsgruppenleiter.
  • Zur Klausur wird zugelassen, wer mindestens 50% der Übungspunkte erreicht. Außerdem muss jeder Teilnehmer eine Lösung (bzw. einen Teil davon) in der Übungsgruppe vorrechnen.
  • Durch das Lösen von Bonusaufgaben und gute Mitarbeit in den Übungen können Sie Zusatzpunkte erlangen. Zusatzpunkte werden auch vergeben, wenn Sie größere Verbesserungen an diesem Wiki vornehmen. Damit solche Verbesserungen der richtigen Person zugeordnet werden, sollten Sie dafür ein eigenes Wiki-Login verwenden, das Ihnen Stephan Meister oder Ullrich Köthe auf Anfrage gerne einrichten.

Prüfungsvorbereitung

Zur Hilfe bei der Prüfungsvorbereitung hat Andreas Fay Quizfragen erstellt.

Literatur

  • R. Sedgewick: Algorithmen (empfohlen für den ersten Teil, bis einschließlich Graphenalgorithmen)
  • J. Kleinberg, E.Tardos: Algorithm Design (empfohlen für den zweiten Teil, einschließlich Graphenalgorithmen)
  • T. Cormen, C. Leiserson, R.Rivest: Algorithmen - eine Einführung (empfohlen zum Thema Komplexität)
  • Wikipedia und andere Internetseiten (sehr gute Seiten über viele Algorithmen und Datenstrukturen)

Gliederung der Vorlesung

  1. Einführung (17.4.2012)
    • Definition von Algorithmen und Datenstrukturen, Geschichte
    • Fundamentale Algorithmen: create, assign, copy, swap, compare etc.
    • Fundamentale Datenstrukturen: Zahlen, Container, Handles
    • Python-Grundlagen
  2. Container (19.4.2012)
    • Anforderungen von Algorithmen an Container
    • Einteilung der Container
    • Grundlegende Container: Array, verkettete Liste, Stack und Queue
    • Sequenzen und Intervalle (Ranges)
  3. Sortieren (24. und 26.4.2012)
    • Spezifikation des Sortierproblems
    • Selection Sort und Insertion Sort
    • Merge Sort
    • Quick Sort und seine Varianten
    • Vergleich der Anzahl der benötigten Schritte
    • Laufzeitmessung in Python
  4. Korrektheit (3. und 8.5.2012)
    • Definition von Korrektheit, Algorithmen-Spezifikation
    • Korrektheitsbeweise versus Testen
    • Vor- und Nachbedingungen, Invarianten, Programming by contract
    • Testen, Execution paths, Unit Tests in Python
    • Ausnahmen (exceptions) und Ausnahmebehandlung in Python
  5. Effizienz (10. und 15.5.2012)
    • Laufzeit und Optimierung: Innere Schleife, Caches, locality of reference
    • Laufzeit versus Komplexität
    • Landausymbole (O-Notation, <math>\Omega</math>-Notation, <math>\Theta</math>-Notation), Komplexitätsklassen
    • Bester, schlechtester, durchschnittlicher Fall
    • Amortisierte Komplexität
  6. Suchen (22. und 24.5.2012)
    • Lineare Suche
    • Binäre Suche in sortierten Arrays, Medianproblem
    • Suchbäume, balancierte Bäume
    • selbst-balancierende Bäume, Rotationen
    • Komplexität der Suche
  7. Prioritätswarteschlangen (29.5.2012)
    • Heap-Datenstruktur
    • Einfüge- und Löschoperationen
    • Heapsort
    • Komplexität des Heaps
  8. Hashing und assoziative Arrays (31.5.und 5.6.2012)
    • Implementation assoziativer Arrays mit Bäumen
    • Hashing und Hashfunktionen
    • Implementation assoziativer Arrays als Hashtabelle mit linearer Verkettung bzw. mit offener Adressierung
    • Anwendung des Hashing zur String-Suche: Rabin-Karp-Algorithmus
  9. Iteration versus Rekursion (12.6.2012)
    • Typen der Rekursion und ihre Umwandlung in Iteration
    • Auflösung rekursiver Formeln mittels Master-Methode und Substitutionsmethode
  10. Generizität (14.6.2012)
    • Abstrakte Datentypen, Typspezifikation
    • Required Interface versus Offered Interface
    • Adapter und Typattribute, Funktoren
    • Beispiel: Algebraische Konzepte und Zahlendatentypen
    • Operator overloading in Python
  11. Graphen und Graphenalgorithmen (19. bis 28.6.2012)
    • Einführung
    • Graphendatenstrukturen, Adjazenzlisten und Adjazenzmatrizen
    • Gerichtete und ungerichtete Graphen
    • Vollständige Graphen
    • Planare Graphen, duale Graphen
    • Pfade, Zyklen
    • Tiefensuche und Breitensuche
    • Zusammenhang, Komponenten
    • Gewichtete Graphen
    • Minimaler Spannbaum
    • Kürzeste Wege, Best-first search (Dijkstra)
    • Most-Promising-first search (A*)
    • Problem des Handlungsreisenden, exakte Algorithmen (erschöpfende Suche, Branch-and-Bound-Methode) und Approximationen
    • Erfüllbarkeitsproblem, Darstellung des 2-SAT-Problems durch gerichtete Graphen, stark zusammenhängende Komponenten
  12. Randomisierte Algorithmen (3. und 5.7.2012)
    • Zufallszahlen, Zyklenlänge, Pitfalls
    • Zufallszahlengeneratoren: linear congruential generator, Mersenne Twister
    • Randomisierte vs. deterministische Algorithmen
    • Las Vegas vs. Monte Carlo Algorithmen
    • Beispiel für Las Vegas: Randomisiertes Quicksort
    • Beispiele für Monte Carlo: Randomisierte Lösung des k-SAT Problems
    • RANSAC-Algorithmus, Erfolgswahrscheinlichkeit, Vergleich mit analytischer Optimierung (Methode der kleinsten Quadrate)
  13. Greedy-Algorithmen und Dynamische Programmierung (10. und 12.7.2012)
    • Prinzipien, Aufwandsreduktion in Entscheidungsbäumen
    • bereits bekannte Algorithmen: minimale Spannbäume nach Kruskal, kürzeste Wege nach Dijkstra
    • Beispiel: Interval Scheduling Problem und Weighted Interval Scheduling Problem
    • Beweis der Optimalität beim Scheduling Problem: "greedy stays ahead"-Prinzip, Directed Acyclic Graph bei dynamischer Programmierung
  14. NP-Vollständigkeit (17. und 19.7.2012)
    • die Klassen P und NP
    • NP-Vollständigkeit und Problemreduktion
  15. Reserve und/oder Wiederholung (24. und 26.7.2012)

Übungsaufgaben

(im PDF Format). Die Abgabe erfolgt am angegebenen Tag bis 14:00 Uhr per Email an den jeweiligen Übungsgruppenleiter. Bei Abgabe bis zum folgenden Montag 11:00 Uhr werden noch 50% der erreichten Punkte angerechnet. Danach wird die Musterlösung freigeschaltet.

  1. Übung (Abgabe 24.4.2012)
    • Python-Tutorial
    • Sieb des Eratosthenes
    • Wert- und Referenzsemantik
    • Dynamisches Array