Randomisierte Algorithmen: Difference between revisions
No edit summary |
No edit summary |
||
Line 226: | Line 226: | ||
:-sorgfältige Wahl von a, c, m notwendig | :-sorgfältige Wahl von a, c, m notwendig | ||
::'''Bsp.''' m = 2<sup>32</sup> | ::'''Bsp.''' m = 2<sup>32</sup> | ||
::: a = 1664525, c = 1013904223 | |||
::: ''"quick and dirty generator"'' | |||
:- Nachteile: | |||
# nicht zufällig genug für viele Anwendungen | |||
::'''Bsp.''' wähle Punkt in R<sup>3</sup> | |||
::: |
Revision as of 00:39, 11 July 2008
1. Randomisierte Algorithmen
Def.: Algorithmen, die bei Entscheidung oder bei der Wahl der Parameter Zufallszahlen benutzen
Bsp.: Lösen des K-SAT-Problems durch RA
geg.: logischer Ausdruck in K-CNF (n Variablen, m Klauseln, k Variablen pro Klausel)
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \underbrace {\underbrace {\left(x_1 \vee x_3 \vee...\right)}_{k\; Variablen} \wedge \left( x_2 \vee x_4 \vee...\right)}_{m\;Klauseln}}
for i in range (trials): #Anzahl der Versuche #Bestimme eine Zufallsbelegung des Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{ x_i \}} : for j in range (steps): if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{ x_i \}} erfüllt alle Klauseln: return Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{ x_i \}} #wähle zufällig eine Klausel, die nicht erfüllt ist und negiere zufällig eine der Variablen in dieser Klausel (die Klausel ist jetzt erfüllt) return None
Eigenschaft: falls Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k>2}
: steps *trials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \in O\left(\Alpha^n \right) \Alpha >1}
z.B. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k=3} steps=3*n, trials=Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\frac{4}3\right)^n}
aber: bei Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k=2} sind im Mittel nur steps=Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle O\left(n^2\right)} nötig, trials=Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle O\left(1\right)}
-Zufallsbelegung hat Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t\leq n} richtige Variablen (im Mittel Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t\approx \frac {n} 2} )
Negieren einer Variable ändert t um 1, u.Z. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t\rightarrow t+1} mit Wahrscheinlichkeit Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac 1 2} ::(für beliebiges k: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac 1 k} )
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t\rightarrow t-1} mit Wahrscheinlichkeit Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac 1 2} ::(für beliebiges k: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac {k-1} k} )
-Wieviele Schritte braucht man im Mittel, um zu einer Lösung mit t Richtigen zu kommen?
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S\left(t\right)=\frac 1 2 S\left(t-1\right) + \frac 1 2 S\left(t+1\right) +1} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S\left(n\right)=0} #Abbruchbedingung der Schleife Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S\left(0\right) = S\left( 1\right) + 1 \Longrightarrow S\left(t\right) = n^2-t^2}
Probe: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S\left(n\right)=n^2-n^2=0} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S\left(0\right) =n^2-0^2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =S\left(1\right)+1} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \;=n^2-1^2+1} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \;=n^2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S\left(t\right)=\frac 1 2 \left(n^2-\left(t-1\right)^2\right) + \frac 1 2 \left(n^2-\left(t+1\right)^2\right)+1} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\frac 1 2 n^2-\frac 1 2 \left( t^2-2t+1\right) + \frac 1 2 n^2-\frac 1 2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\left(t^2+2t+1\right)} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \;=n^2-t^2}
Das ist das Random Walk Problem
Im ungünstigsten Fall (t=0) werden im Mittel Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n^2} Schritte benötigt, um durch random walk nach t=n zu gelangen.
2. RANSAC-ALGORITHMUS (Random Sample Consensus)
Aufgabe: gegeben: Datenpunkte
- gesucht: Modell, das die Datenpunkte erklärt

Messpunkte:
übliche Lösung: Methode der kleinsten Quadrate Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \min_{a,b} \sum_{i} \left(a x_i + b + y_i\right)^2} Schulmathematik: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Minimum\stackrel{\wedge}{=}Ableitung=0}
Lineares Gleichungssystem
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{da}\sum{i} \left(ax_i+b-y_i\right)^2=\sum{i} \frac{d}{da} \left[ax_i+b-y_i\right)^2}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f\left(g\left(x\right)\right)}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f\left(x\right)=x^2}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y\left(a\right)=ax_i+b-y_i}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\sum_{i}2\left(ax_i+b-y_i\right)\frac{d}{da} \underbrace {ax_i+b-y_i}_{x_i}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \underline {=2\sum_{i}\left(ax_i+b-y_i\right)x_i\stackrel{!}{=}0}}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a\sum_{i}{x_i}^2+b\sum_{i}x_i=\sum_{i}x_iy_i}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a\sum_{i}x_i+b\sum_{i}1=\sum_{i}y_i}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{db}\sum_{i}\left(ax_i+b-y_i\right)^2=2\sum_{i}\left(ax_i+b-y_i\right)*1}
- Problem: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon %} der Datenpunkte sind Outlier
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Longrightarrow} Einfaches Anpassen des Modells an die Datenpunkte funktioniert nicht
- Seien mindestens k Datenpunkte notwendig, um das Programm anpassen zu können
RANSAC-Algorithmus
for l in range (trials): wähle zufällig k Punkte aus passe das Modell an die k Punkte an zähle, wieviele Punkte in der Nähe des Modells liegen (d.h. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d_i < d_max} muss geschickt gewählt werden) #Bsp. Geradenfinden:-wähle a,b aus zwei Punkten -berechne: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |ax_i+b-y_i|=d_i} -zähle Punkt i als Inlier, falls Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d_i<d_ma} return: Modell mit höchster Zahl der Inlier
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle trials= \frac{log\left(1-p\right)}{log\left(1-\left(1-\epsilon\right)^k\right)}} mit k=Anzahl der Datenpunkte und p=Erfolgswahrscheinlichkeit, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon} =Outlier-Anteil
Erfolgswahrscheinlichkeit: p=99%
Ein Spiel: Wie viel Schritte braucht man im Mittel zum Ziel?
geg.: 5 Plätze, 2 Personen: eine Person rückt vom einem Platz zu dem enderen Platz; die zweite Person wirft die Münze. Wenn die Münze auf Kopf landet, rücke nach rechts und wenn die Münze auf Zahl landet, rücke nach links. <--- Zahl Kopf--> Kopf: ///// Zahl: ///
- => mit 8 Schritten bis zum Ziel
- im Mittel: bei N Plätzen braucht man N2 Schritte
- all: mit N2 Schritten um N Plätze rücken
- Wie viel Schritte braucht man im Mittel zum Ziel?
#wenn wir uns im Stuhl Nr.1 befinden
#bei 0.Platz
- Lösung:
- speziell:
#wenn man am ungünstigsten Platz startet
Beziehung zu randomisiertem 2-SAT
"Platz ": Variablen haben den richtigen Wert, sind falsch gesetzt
# Anfangszustand
Las Vegas vs. Monte Carlo
* Las Vegas - Algorithmen - Ergebnis ist immer korrekt. - Berechnung ist mit hoher Wahrscheinlichkeit effizient (d.h. Randomisierung macht den ungünstigsten Fall unwahrscheinlich).
* Monte Carlo - Algorithmen - Berechnung immer effizient. - Ergebnis mit hoher Wahrscheinlichkeit korrekt (falls kein effizienter Algorithmus bekannt, der immer die richtige Lösung liefert).
Las Vegas | Monte Carlo |
---|---|
- Erzeugen einer perfekten Hashfuktion | - Algorithmus von Freiwald(Matrizenmultiplikation) |
- universelles Hashing | - RANSAC |
- Quick Sort mit zufälliger Wahl des Pivot-Elements | - randomisierte K-SAT(k>=3)(Alg. von Schöning) |
- Treep mit zufälligen Prioritäten |
Zufallszahlen
- - kann man nicht mit deterministischen Computern erzeugen
- - aber man kann Pseudo-Zufallszahlen erzeugen, die viele Eigenschaften von echten Zufallszahlen haben
- * sehr ähnlich zum Hash
"linear Conguential Random number generator"
- -sorgfältige Wahl von a, c, m notwendig
- Bsp. m = 232
- a = 1664525, c = 1013904223
- "quick and dirty generator"
- Bsp. m = 232
- - Nachteile:
- nicht zufällig genug für viele Anwendungen
- Bsp. wähle Punkt in R3
- Bsp. wähle Punkt in R3