Effizienz: Difference between revisions

From Alda
Jump to navigationJump to search
Line 49: Line 49:
        
        
* Komplexität im ungünstigsten Fall  
* Komplexität im ungünstigsten Fall  
*: Der ungünstigste Fall ist die Eingabe gegebener Länge, für die der Algorithmus am langsamsten ist. Der Nachteil dieser Methode besteht darin, dass dieser ungünstige Fall in der Praxis gar nicht oder nur selten vorkommt, so dass sich der Algorithmus in Wirklichkeit besser verhält als man nach dieser Analyse erwarten würde. Beim Quicksort-Algorithmus mit zufälliger Wahl des Pivot-Elements müsste z.B. stets das kleinste oder größte Element des aktuellen Intervalls als Pivot-Element gewählt werden, was äußerst unwahrscheinlich ist.
*: Der ungünstigste Fall ist die Eingabe gegebener Länge, für die der Algorithmus am langsamsten ist. Der Nachteil dieser Methode besteht darin, dass dieser ungünstige Fall in der Praxis vielleicht gar nicht oder nur selten vorkommt, so dass sich der Algorithmus in Wirklichkeit besser verhält als man nach dieser Analyse erwarten würde. Beim Quicksort-Algorithmus mit zufälliger Wahl des Pivot-Elements müsste z.B. stets das kleinste oder größte Element des aktuellen Intervalls als Pivot-Element gewählt werden, was äußerst unwahrscheinlich ist.
* Komplexität im durchschnittlichen/typischen Fall
* Komplexität im durchschnittlichen/typischen Fall
*: Der typische Fall ist die mittlere Komplexität des Algorithmus über alle möglichen Eingaben. Dies ist allerdings oft nur schwer oder gar nicht festlegbar, weil man dazu die Wahrscheinlichkeit jeder möglichen Eingabe kennen müsste. Ist diese Wahrscheinlichkeit nicht bekannt, trifft man geeignete Annahmen. Bei Sortieralgorithmen können z.B. alle möglichen Permutationen des Eingabearrays als gleich wahrscheinlich angenommen werden, und der typische Fall ist dann die mittlere Komplexität über alle diese Eingaben. Oft hat man jedoch in der Praxis andere Wahrscheinlichkeitsverteilungen, z.B. sind die Daten oft "fast sortiert" (nur wenige Elemente sind an der falschen Stelle). Dann verhält sich der Algorithmus ebenfalls anders als vorhergesagt.
*: Der typische Fall ist die mittlere Komplexität des Algorithmus über alle möglichen Eingaben. Dies ist allerdings oft nur schwer oder gar nicht festlegbar, weil man dazu die Wahrscheinlichkeit jeder möglichen Eingabe kennen müsste. Ist diese Wahrscheinlichkeit nicht bekannt, trifft man geeignete Annahmen. Bei Sortieralgorithmen können z.B. alle möglichen Permutationen des Eingabearrays als gleich wahrscheinlich angenommen werden, und der typische Fall ist dann die mittlere Komplexität über alle diese Eingaben. Oft hat man jedoch in der Praxis andere Wahrscheinlichkeitsverteilungen, z.B. sind die Daten oft "fast sortiert" (nur wenige Elemente sind an der falschen Stelle). Dann verhält sich der Algorithmus ebenfalls anders als vorhergesagt.

Revision as of 20:51, 8 May 2008

(Vorlesung 7.5.:)

Laufzeit

Die Laufzeit ist für den Benutzer ein wichtiges Kriterium. Schwierigkeit bei der Bestimmung: Die Laufzeit hängt von vielen Faktoren ab die evtl. nicht kontrollierbar sind:

  • Prozessor/Auslastung des Systems
  • Speicher/Cache/Bus
  • Compiler/Optimierer des Compilers (Compiler auf verschiedene Architekturen optimiert?)
  • Geschick des Programmierers
  • Daten (Beispiel Quiclsort: Best case und worst case[Vorsortierter Input] stark unterschiedlich)

All diese Faktoren sind untereinander abhängig.

Laufzeitvergleiche sind mit Vorsicht zu interpretieren. Generell sollten bei Vergleichen möglichst wenige Parameter verändert werden, z.B.

  • gleiches Programm(gleiche Kompilierung), gleiche Daten, andere Prozessoren

oder

  • gleiche CPU, Daten, andere Programme (Vergleich von Algorithmen)

Beobachtung: Durch Laufzeitmessung ist schwer festzustellen, ob ein Alg prinzipiell besser ist als ein anderer.

Komplexität

Komplexitätsbetrachtungen ermöglichen den Vergleich der prinzipiellen Eigenschaften von Algorithmen unabhängig von einer Implementation, Umgebung etc.

Eine einfache Möglichkeit ist das Zählen der Aufrufe einer Schlüsseloperation. Beispiel Sortieren:

  • Anzahl der Vergleiche
  • Anzahl der Vertauschungen

Beispiel: Selection Sort

 for i in range(len(a)-1):
   max = i
   for j in range(i+1, len(a)):
     if a[j] < a[max]:
       max = j
   a[max], a[i] = a[i], a[max]      # swap
  • Anzahl der Vergleiche: Ein Vergleich in jedem Durchlauf der inneren Schleife. Es ergibt sich folgende Komplexität:
    Ingesamt <math>\sum_{i=0}^{N-2} \sum_{j=i+1}^{N-1}1 = \frac{N}{2} (N-1) \!</math> Vergleiche.
  • Anzahl der Vertauschungen: Eine Vertauschung pro Durchlauf der äußeren Schleife:
    Insgesamt <math>N-1 \!</math> Vertauschungen

Die Komplexität wird durch die Operationen bestimmt, die am häufigsten ausgeführt werden, hier also die Anzahl der Vergleiche. Die Anzahl der Vertauschungen ist kein geeignetes Kriterium für die Komplexität von selection sort, weil der Aufwand in der inneren Schleife ignoriert wird. Die Komplexität ist in der Regel eine Funktion der Eingabegröße, sie (Kann auch von der Art der Daten abhängen, nicht nur von der Menge, z.B. vorsortierte Daten bei Quicksort)

Fallunterscheidung: Worst und Average Case

Die Komplexität ist in der Regel eine Funktion der Eingabegröße (Anzahl der Eingabebits, Anzahl der Eingabeelemente). Sie kann aber auch von der Art der Daten abhängen, nicht nur von der Menge, z.B. vorsortierte Daten bei Quicksort. Um von der Art der Daten unabhängig zu werden, kann man zwei Fälle der Komplexität unterscheiden:

  • Komplexität im ungünstigsten Fall
    Der ungünstigste Fall ist die Eingabe gegebener Länge, für die der Algorithmus am langsamsten ist. Der Nachteil dieser Methode besteht darin, dass dieser ungünstige Fall in der Praxis vielleicht gar nicht oder nur selten vorkommt, so dass sich der Algorithmus in Wirklichkeit besser verhält als man nach dieser Analyse erwarten würde. Beim Quicksort-Algorithmus mit zufälliger Wahl des Pivot-Elements müsste z.B. stets das kleinste oder größte Element des aktuellen Intervalls als Pivot-Element gewählt werden, was äußerst unwahrscheinlich ist.
  • Komplexität im durchschnittlichen/typischen Fall
    Der typische Fall ist die mittlere Komplexität des Algorithmus über alle möglichen Eingaben. Dies ist allerdings oft nur schwer oder gar nicht festlegbar, weil man dazu die Wahrscheinlichkeit jeder möglichen Eingabe kennen müsste. Ist diese Wahrscheinlichkeit nicht bekannt, trifft man geeignete Annahmen. Bei Sortieralgorithmen können z.B. alle möglichen Permutationen des Eingabearrays als gleich wahrscheinlich angenommen werden, und der typische Fall ist dann die mittlere Komplexität über alle diese Eingaben. Oft hat man jedoch in der Praxis andere Wahrscheinlichkeitsverteilungen, z.B. sind die Daten oft "fast sortiert" (nur wenige Elemente sind an der falschen Stelle). Dann verhält sich der Algorithmus ebenfalls anders als vorhergesagt.

Wir beschränken uns in dieser Vorlesung auf die Komplexität im ungünstigseten Fall. Exakte Formeln für Komplexität sind aber auch dann schwer zu gewinnen.

Beispiele aus den Übungen (Gemessene Laufzeiten für Mergesort/Selectionsort)

  • Mergesort: <math>\frac{0,977N\log N}{\log 2} + 0,267N-4.39 \!</math>
  • andere Lösung: <math>1140 N\log(N) - 1819N + 6413 \!</math>
  • Selectionsort: <math>\frac{1}{2}N^2 - \frac{1}{2N} - 10^{-12} \!</math>
  • andere Lösung: <math>1275N^2 - 116003^N + 11111144 \!</math>

Aus diesen Formeln wird nicht offensichtlich, welcher Algorithmus besser ist. Näherung: Betrachte nur sehr große Eingaben (Meist sind alle Algorithmen schnell genug für kleine Eingaben). Dieses Vorgehen wird als Asymptotische Komplexität bezeichnet (N gegen unendlich).

Asymptotische Komplexität am Beispiel Polynom

Polynom: <math>ax^2+bx+c=p\!</math>

<math>x \!</math> sei die Eingabegröße, und wir betrachten die Entwicklung von <math>p \!</math> in Abhängigkeit von <math>x \!</math>.

  • <math>x=0 \!</math>
    <math>p=c \!</math>
  • <math>x=1 \!</math>
    <math>p=a+b+c \!</math>
  • <math>x=1000 \!</math>
    <math>p=1000000a+1000b+c \approx 1000000a\!</math>
  • <math>x \to \infty \!</math>
    <math>p \approx x^2a\!</math>

Für sehr große Eingaben verlieren also b und c immer mehr an Bedeutung, so dass am Ende nur noch a für die Komplexitätsbetrachtung wichtig ist.

O-Notation

  • Intuitiv: Für große N dominieren die am schnellsten wachsenden Terme.
  • Formal: Eine Funktion <math>f(x) \in O(g(x)) \!</math>* genau dann wenn es gibt eine Konstante <math>c \!</math>, so dass <math>f(x) \le cg(x), \forall x > x_0 \!</math>

Ein einfaches Beispiel

Rot = <math>x^2 \!</math> Blau = <math>\sqrt{x} \!</math>

<math>\sqrt{x} \in O(x^2)\!</math> weil <math>\sqrt{x} \le x^2\!</math> für alle <math>x < x_0 = 1 \!</math>

Komplexität bei kleinen Eingaben

Algorithmus 1: <math>O(N^2) \!</math> Algortihmus 2: <math>=O(N\log{N}) \!</math>

Algorithmus 2 ist schneller (Von geringerer Komplexität), aber bei vielen wiederholten kleinen Eingaben ist Algorithmus 1 schneller.

Eigenschaften der O-Notation(Rechenregeln)

  1. Transitiv:

<math>f(x) \in O(g(x)) \land g(x) \in O(h(x)) \to f(x) \in O(h(x)) \!</math>

  1. Additiv:

<math>f(x) \in O(h(x)) \land g(x) \in O(h(x)) \to f(x) + g(x) \in O(h(x)) \!</math>

  1. Für Monome gilt:

<math>x^k \in O(x^k)) \land x^k \in O(x^{k+j}), \forall j \ge 0 \!</math>