Randomisierte Algorithmen: Difference between revisions
Line 88: | Line 88: | ||
<math>\frac{d}{da}\sum{i} \left(ax_i+b-y_i\right)^2=\sum{i} \frac{d}{da} \left[ax_i+b-y_i\right)^2</math> | <math>\frac{d}{da}\sum{i} \left(ax_i+b-y_i\right)^2=\sum{i} \frac{d}{da} \left[ax_i+b-y_i\right)^2</math> | ||
::<math>f\left(g\left(x\right)\right)</math> | ::<math>f\left(g\left(x\right)\right)</math> ::: <math>f\left(x\right)=x^2</math> | ||
::<math>y\left(a\right)=ax_i+b-y_i</math> | ::<math>y\left(a\right)=ax_i+b-y_i</math> | ||
Revision as of 17:40, 3 July 2008
1. Randomisierte Algorithmen
Def.: Algorithmen, die bei Entscheidung oder bei der Wahl der Parameter Zufallszahlen benutzen
Bsp.: Lösen des K-SAT-Problems durch RA
geg.: logischer Ausdruck in K-CNF (n Variablen, m Klauseln, k Variablen pro Klausel)
<math>\underbrace {\underbrace {\left(x_1 \vee x_3 \vee...\right)}_{k\; Variablen} \wedge \left( x_2 \vee x_4 \vee...\right)}_{m\;Klauseln}</math>
for i in range (trials): #Anzahl der Versuche #Bestimme eine Zufallsbelegung des <math>\{ x_i \}</math>: for j in range (steps): if <math>\{ x_i \}</math> erfüllt alle Klauseln: return <math>\{ x_i \}</math> #wähle zufällig eine Klausel, die nicht erfüllt ist und negiere zufällig eine der Variablen in dieser Klausel (die Klausel ist jetzt erfüllt) return None
Eigenschaft: falls <math>k>2</math> : steps *trials <math>\in O\left(\Alpha^n \right) \Alpha >1</math>
z.B. <math>k=3</math> steps=3*n, trials=<math>\left(\frac{4}3\right)^n</math>
aber: bei <math>k=2</math> sind im Mittel nur steps=<math>O\left(n^2\right)</math> nötig, trials=<math>O\left(1\right)</math>
-Zufallsbelegung hat <math>t\leq n</math> richtige Variablen (im Mittel <math>t\approx \frac {n} 2</math>)
Negieren einer Variable ändert t um 1, u.Z. <math>t\rightarrow t+1</math> mit Wahrscheinlichkeit <math>\frac 1 2</math>:: (für beliebiges k: <math>\frac 1 k</math>)
- <math>t\rightarrow t-1</math> mit Wahrscheinlichkeit <math>\frac 1 2</math>:: (für beliebiges k: <math>\frac {k-1} k</math>)
-Wieviele Schritte braucht man im Mittel, um zu einer Lösung mit t Richtigen zu kommen?
<math>S\left(t\right)=\frac 1 2 S\left(t-1\right) + \frac 1 2 S\left(t+1\right) +1</math> <math>S\left(n\right)=0</math> #Abbruchbedingung der Schleife <math>S\left(0\right) = S\left( 1\right) + 1 \Longrightarrow S\left(t\right) = n^2-t^2</math>
Probe: <math>S\left(n\right)=n^2-n^2=0</math> <math>S\left(0\right) =n^2-0^2</math> <math>=S\left(1\right)+1</math> <math>\;=n^2-1^2+1</math> <math>\;=n^2</math> <math>S\left(t\right)=\frac 1 2 \left(n^2-\left(t-1\right)^2\right) + \frac 1 2 \left(n^2-\left(t+1\right)^2\right)+1</math> <math>=\frac 1 2 n^2-\frac 1 2 \left( t^2-2t+1\right) + \frac 1 2 n^2-\frac 1 2</math> <math>=\left(t^2+2t+1\right)</math> <math>\;=n^2-t^2</math>
Das ist das Random Walk Problem
Im ungünstigsten Fall (t=0) werden im Mittel <math>n^2</math> Schritte benötigt, um durch random walk nach t=n zu gelangen.
2. RANSAC-ALGORITHMUS (Random Sample Consensus)
Aufgabe: gegeben: Datenpunkte
- gesucht: Modell, das die Datenpunkte erklärt
Messpunkte
übliche Lösung: Methode der kleinsten Quadrate <math>\min_{a,b} \sum_{i} \left(a x_i + b + y_i\right)^2</math> Schulmathematik: <math>Minimum\stackrel{\wedge}{=}Ableitung=0</math>
Lineares Gleichungssystem:
<math>\frac{d}{da}\sum{i} \left(ax_i+b-y_i\right)^2=\sum{i} \frac{d}{da} \left[ax_i+b-y_i\right)^2</math>
- <math>f\left(g\left(x\right)\right)</math> ::: <math>f\left(x\right)=x^2</math>
- <math>y\left(a\right)=ax_i+b-y_i</math>
pod gesucht: RANSAC
- Problem: <math>\Epsilon %</math> der Datenpunkte sind Outlier
- <math>Longrightarrow</math> Einfaches Anpassen des Modells an die Datenpunkte funktioniert nicht
- Seien mindestens k Datenpunkte notwendig, um das Programm anpassen zu können
RANSAC-Algorithmus
for l in range (trials): wähle zufällig k Punkte aus passe das Modell an die k Punkte an zähle, wieviele Punkte in der Nähe des Modells liegen (d.h. <math>d_i < d_max</math> muss geschickt gewählt werden) #Bsp. Geradenfinden:-wähle a,b aus zwei Punkten -berechne: <math>|ax_i+b-y_i|=d_i</math> -zähle Punkt i als Inlier, falls <math>d_i<d_ma</math> return: Modell mit höchster Zahl der Inlier
-<math>trials= \frac{log\left(1-p\right)}{log\left(1-\left(1-\Epsilon\right)^k\right)}</math> mit k=Anzahl der Datenpunkte und p=Erfolgswahrscheinlichkeit, <math>\Epsilon</math>=Outlier-Anteil
Erfolgswahrscheinlichkeit p=99%
<math>\begin{array}{|c||c|c|c|c|c|}
Beispiel & k & \Epsilon=10% & 20% & 50% & 70%\\ \hline Linie\;in\;2D & 2 & 3 &5 & 17 & 49\\ Kreis\;in\;2D & 3 & 4 & 7 & 35 & 169\\ Ebene\;in\;3D & 8 & 9 & 26 & 1172 & 70188\\ \end{array}</math>