Prioritätswarteschlangen

From Alda
Jump to navigationJump to search

Sortieren als Suchproblem

Systematisches Fragen mit True und False kann auch als Baum dargestellt werden.


Hier ein Beispiel.Als Eingabe sind drei Zahlen angegeben a={1,2,3},wobei die Reihenfolge nicht bekannt ist.

Also mit Eingabe von drei Elemnten müssen im ungünstigsten Fall drei Schritte vorgenommen werden.
Die allgemeine Regel lautet: es gibt N mögliche Lösungen
=>der Baum muss N Blätter haben
=>ein baum mit N Blättern hat mindestens die Höhe logN




vollständiger Baum (oder balancierter Baum)[1]
2^d+1 Knoten
2^d Blätter










Sortieren

N = n!wenn das Arrey n Elemente hat
Zum Beispiel: 3! = 1*2*3 = 6
log6 <math>\approx</math> 2,6 => d = 3 - bei dem Frage-Baum brauch man im ungünstigsten Fall drei Schritte (True/False)
log6 <math>\approx</math> 2,6 - weil nicht jeder Pfad zu Ende durchgelaufen sein soll, um die Lösung zu bekommen.
d<math>\ge</math>log<math>_2</math>n! = log<math>_2</math>(1,2...n) = log<math>_2</math>1 + log<math>_2</math>2 + ... + log<math>_2</math>n = <math>\sum_{n=1}^n log_2n </math>

Abschätzung von Summen durch Integrale

gegeben : f(x) - monoton wachsend



<math>\textstyle \int\limits_{x_1}^{x_2} f(\big\lfloor x \big\rfloor)dx</math> <math>\le</math> <math>\textstyle \int\limits_{x_1}^{x_2} f(x)dx </math> <math>\le</math> <math>\textstyle \int\limits_{x_1}^{x_2} f(\big\lceil x \big\rceil)dx</math>


<math>\downarrow</math>


<math>\textstyle \int\limits_{x_1}^{x_1 + 1} \underline{f(x_1)}dx</math> + ...+ <math>\textstyle \int\limits_{x_2-1}^{x_2} f(x_2 - 1)dx </math> = <math>\sum_{k=x_1}^{x_2-1} f(k)</math>
( angenommen <math>x_1</math> und <math>x_2</math> <math>\in </math> <math>\mathbb{N},\mathbb{Z}</math> )


wobei f(<math>x_1</math>) = f(<math>\big\lfloor x \big\rfloor </math><math>)_{x_1}^{x_1 +1}</math>


<math>\textstyle \int\limits_{x_1}^{x_1 +1} f(x_1)dx</math> = f(<math>x_1</math>) <math>\textstyle \int\limits_{x_1}^{x_1 + 1} 1dx</math> = f(<math>x_1</math>)x<math>\textstyle \int\limits_{x_1}^{x_1 + 1}</math> = f(x_1)


<math>\sum_{k=x_1}^{x_2-1} f(k) \le \textstyle \int\limits_{x_1}^{x_2} f(x)dx</math>


<math>\sum_{k=x_1 +1}^{x_2} f(k) \ge \textstyle \int\limits_{x_1}^{x_2} f(x)dx \iff</math> <math>\sum_{k=x_1}^{x_2} f(x) \ge \textstyle \int\limits_{x_1 - 1}^{x_2} f(x)dx </math>


für uns gilt: f(x) = log<math>_2</math>(x)


log<math>_2</math>1 + <math>\sum_{k=2}^{n} log_2 x\ge\textstyle \int\limits_{1}^{n} log_2 (x)dx </math> = <math>\frac{1}{ln2}\textstyle \int\limits_{1}^{n} log(x)dx</math> = <math>\frac{1}{ln2}</math> [xlogx - x]<math>_{x = 1}^n</math> = nlog<math>_2</math>(n) - <math>\frac{n - 1}{ln2}</math> = <math>\Omega</math>(nlog<math>_2</math>n)


<math>\Rightarrow</math> d = log<math>_2</math>n! = <math>\Omega</math>(nlogn)

kein Sortieralgorithmus auf Basis paarweise Vergleiche ist asymthotisch schneller als Mergesort

Prioritätswarteschlangen

* Max Priority Quene : insert(x)
                      x = largest()
                      removeLargest()
* Min Priority Quene: smallest()
                     REMOVEsMALLEST()

Prioritätswarteschlange als Suchproblem

  • Sequentielle Suche - Array mit Prioritäten : insert(x)<=> a.append(x) ( <math>\mathcal{O}(1)</math>(amortisierte Komplexität))
def largest(a):
if len (a) == 0:
raise RuntimeError("...")
max = a[0]
k = 0
for n in range(1, len(a): (innere Schleife von SelectionSort)
if a[n] > max (Das ganze hat die Komplexität: N = len(a) => <math>\mathcal{O}(N)</math>
man = a[n]
k = n
return k

Bei kleine Array ist dies die schnellste Methode

Binärer (balancierter)Suchbaum

insert => z.B. wie beim Anderson Baum [2] <math>\mathcal{O}(logN)</math>

def largest(node):                     # Wurzel
if node.right is not None: #rechts stehen immer die großen
return largest(node.right)
return node #wenn es nicht mehr nach rechts geht, dann haben wir den größten Knoten gefunden

Das ganze hat <math>\mathcal{O}(logN)</math> Komplexität
Ergebnis: gute Komplexität aber komplizierte Datenstruktur

Heap

  • Datenstruktur optimiert für Prioritätssuche - man sucht nicht effizient alle Knoten, sondern nur einen bestimmten z.B. Heap max
  • Definition: ein linkslastiger Binärbaum ist ein Baum mit <math>d(node.left) \geq d(node.right)</math>

Ein Heap ist ein linkslastiger, perfekt balancierter Baum. (lässt sich max. um 1 unterscheiden)

Man kann einen Heap leicht als Array implementieren, wie folgende Grafik veranschaulicht:

index[parent] = [(indexChild - 1)/2]   #[] heißt abgerundet
index[left] = index[parent]2 + 1
index[right] = index[parent]2 + 2

=> linkslastiger perfect balancierter Binärbaum kann effizient als Array abgespeichert werden
=>verwende Indizes wie oben

Heap - Bedingung

  • die Wurzel hat höhere Prioriät als die Kinder(gilt für jeden Teilbaum)

=>Wurzel = array[0] hat die größte Priorität

def largest(h):
return h[0] <math>\mathcal{O}(N)</math>

Einfügen in einem Heap

h - Array #speichrt Haep

 def insert(h,x):
h.append(x) # wir speichern den Wurzel am Ende, so wird glecih zu einem linkssalstigen perfect balancierten Baum (die Haep - Bedingung ist erfüllt)
upheap(h, len(h) - 1):


def upheap(h, k):
"""k-tes Element evtl. an der falsche Stelle
"""
v = h[k]
while True #endlose Schleife
if k == 0:
break
parent = (k - 1/2)
if h[parent]>v:
break
h[k] = h.parent
k = parent
h[k] = v



def removeLargest(h):
    h[0] = h[len(h) - 1]
del h[len(n) - 1] <math>\mathcal{O}(1)</math>
downHeap(h, 0) <math>\mathcal{O}(logN)</math>


def downHeap(h, k):
v = h[k]
while True
child = 2k + 1 #linke Kind
if child <math>\ge</math>len{h):
break
if child < and h[child] < h[child + 1] #rechtes Kind
child = child + 1 if v <math>\ge</math> h[child]:
break
h[k] = h[child]
k = child
h[k] = v